Numerical modeling of radionuclide migration through a borehole disposal site

نویسندگان

  • Serwaa Yeboah
  • Thomas T Akiti
  • John J Fletcher
چکیده

The migration of radionuclides from a borehole repository located about 20 km from the Akwapim fault line which lies in an area of high seismicity was analyzed for some selected radionuclides. In the event of a seismic activity, fractures and faults could be rejuvenated or initiated resulting in container failure leading to the release of radionuclides. A numerical model was solved using a two-dimensional finite element code (Comsol Multiphysics) by taking into account the effect of heterogeneities. Results showed that, the fractured medium created preferential pathways indicating that, fault zones generated potential paths for released radionuclides from a radioactive waste repository. The results obtained showed that variations in hydraulic conductivity as a result of the heterogeneity considered within the domain significantly affected the direction of flow.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sensitivity Analysis of Seals Permeability and Performance Assessment of Deep Borehole Disposal of Radioactive Waste

The concept of disposal of high-level radioactive waste in deep boreholes, and probabilistic performance assessment (PA) of a generic disposal system are described. A series of preliminary PA simulations, conducted to evaluate the possible migration of radionuclides to an accessible environment, are presented. The PA simulations provide estimates of radionuclide releases and mean annual radiati...

متن کامل

MODFLOW/MT3DMS Based Modeling Leachate Pollution Transfer in Solid Waste Disposal of Bahar Plain Deep Aquifer

Abstract Background and purpose: This paper presents a case study in simulation of process governing leachate occurrence and subsequent transport, and investigates its migration away from the landfill to control environmental adverse effects on a deep aquifer. Materials and Methods: The landfill examined in this study was an area of 240 ha and received 500 ton/day of solid waste generated fro...

متن کامل

Hydrogeological modeling of radionuclide transport in low permeability media: a comparison between Boom Clay and Ypresian Clay

Safe disposal of nuclear waste is an important environmental challenge. Several countries are investigating deep geological disposal as a long-term solution for their high-level waste. In Belgium, the Oligocene Boom Clay is the reference host formation for research purposes and for the safety and feasibility assessment of the deep disposal of high-level and/or long-lived radioactive waste. The ...

متن کامل

A Prototype Performance Assessment Model for Generic Deep Borehole Repository for High - Level Nuclear Waste – 12132 Joon

A deep borehole repository is one of the four geologic disposal system options currently under study by the U.S. DOE to support the development of a long-term strategy for geologic disposal of commercial used nuclear fuel (UNF) and high-level radioactive waste (HLW). The immediate goal of the generic deep borehole repository study is to develop the necessary modeling tools to evaluate and impro...

متن کامل

Investigation of borehole cross-dipole flexural dispersion crossover through numerical modeling

Crossover of the dispersion of flexural waves recorded in borehole cross-dipole measurements is interpreted as an indicator of stress-induced anisotropy around a circular borehole in formations that are isotropic in the absence of stresses. We have investigated different factors that influence flexural wave dispersion. Through numerical modeling, we determined that for a circular borehole surro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2014